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I. Scope of work 
     This subcontract is aimed at developing the mesoscale computational capability to help ensure success 
of the project “Multiscale Capability for Exploring Transport Phenomena in Battery” at the Lawrence 
Livermore National Laboratory (LLNL). We develop an efficient computer code that implements the 
smoothed boundary method for simulating charge transport and coupled microstructure evolution in 
battery electrode architectures. 
 
II. Objectives  
• To develop a computational model for solving the governing equations for charge transport in both 

electrolyte and electrode phases.  
• To develop an efficient computer code that implements the smoothed boundary method for simulating 

charge transport, accompanied phase microstructure evolution, and stress evolution within the 
polycrystalline electrode upon battery charge/discharge.   

 
III. Progress 
• Modeling diffusional processes near the interface 
     One of major components for modeling charge transport is the computational model of the diffusional 
process of ions or atoms in both electrolyte and electrode. The ionic flux at the interface is determined by 
the electrochemical reaction taking place at the electrode/electrolyte interface. We have developed the 
computational model and the corresponding computer code for solving the diffusion equation taking into 
account a boundary condition imposed at the interface by employing the smoothed boundary method [1].  
    
Ø Description of the model 
The system is described by the domain parameters (Ψ1, Ψ2) which identify the electrode and electrolyte 
phases as shown in Fig. 1.  

	  

Figure	  1.	  System	  configuration	  for	  charge	  transport	  modeling 



To integrate the diffusion equation in an electrode with the equation in an electrolyte within a context of 
smoothed boundary framework, we employ the parameter ( 2
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where jbv is the electrical current taking place at the interface and is generally determined by the over-
potential at the interface. The equation is numerically solved using the Fourier-spectral method [2]. 
 
Ø Preliminary simulation results 
Fig.2 shows the preliminary result of the simulation of the diffusional process occurring near the 
electrode/electrolyte interface as a function of time. We imposed the constant current boundary condition 
for simplicity and employed the different magnitudes of diffusivity for electrode and electrolyte.    

	  

Figure	  2.	  Computer	  simulations	  of	  the	  diffusional	  process	  near	  the	  interface 

• Calculation of coherency strain energy within an particle  
    Since the stress evolution during the chare/discharge process influences the kinetics of charge transport 
itself, the capability of computing the coherency strain energy in a electrode particle is one of key 
components of charge transport modeling. We have developed the computational model for the 
calculation of coherency strain energy within a particle with an arbitrary shape by implementing the 
smoothed boundary method to impose the boundary condition at the surface of the particle.  
  
Ø Description of the model 



     Since the mechanical equilibrium is usually established much faster than the diffusional processes, we 
solve the mechanical equilibrium equation. To impose the boundary condition (zero traction force) at the 
surface of a particle, we employ the smoothed-boundary method [1]. The equation is given by                     
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where ijε  is the homogeneous strain, iu  is the heterogeneous component of the displacement, 0
ijε  is the 

eigenstrain which represents the lattice mismatch between two different phases (Li-rich (or LiFePO4) and 
Li-poor (FePO4) phases in this case), and )(rCijkl


 is defined as ref

ijklCr ⋅)(ψ . The elastic modulus 

mismatch as well as the lattice mismatch between two different phases was considered for the 
computations. Eq. (4) is numerically solved using the Fourier-spectral iterative-perturbation method [3, 4] 
since the elastic modulus of the entire system is strongly inhomogeneous. 
 
Ø Preliminary simulation results 
Using the proposed equation, we preliminarily tested two different cases of particle shapes: one is a 
spherical shape particle (isotropic geometry) and the other is a rod shape particle (anisotropic geometry). 
The particles consist of two different phases (LiFePO4 and FePO4). 
  
a. Test geometry 1 (Spherical shape particle): We generated a spherical shape particle and computed the 
coherency strain energy as a function of crystallographic orientation of phase boundaries and the phase 
fraction of Li-rich phase by controlling the magnitude of H in Fig. 3. We used the lattice parameters [5] 
and elastic moduli [6] of two phases as inputs. The computational model can deal with the all the possible 
crystallographic orientations of phase boundaries inside the particle, and the model allows us to identify 
the phase boundary orientation producing the least coherency strain energy which is most probable 
orientation inside the particle.    



	  

Figure	  3.	  Parametric	  study	  of	  coherency	  strain	  energy	  in	  a	  spherical	  shape	  particle 

b. Test geometry 2 (Rod shape particle): We also tested the rod shape particle consisting of two different 
phases. We systematically controlled the parameters W and/or L as shown in Fig. 4 and computed the 
coherency strain energy using the model. This model enables the coherency strain energy calculations 
with different configurations of phases within a particle of an anisotropic geometry.  

	  

Figure	  4.	  Parametric	  study	  of	  coherency	  strain	  energy	  in	  a	  rod	  shape	  particle 

 
IV. Future directions 
• Developing the computational model for computing electrical potential near the interface 
     To compute the distribution of electrical potential in electrode, electrolyte, and interface between the 
two phases is another major effort which should be done for charge transport modeling. The electrical 
potential profile is controlled by the ionic current in electrolyte and electronic current in an electrode. The 
potential at the interface is determined by the electrochemical reaction. Since the relaxation of the 



electrical potential is much faster than the diffusional processes, we assume the steady state of the 
electrical current. By employing the smoothed boundary method [1], the following mathematical formula 
could be proposed: 
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where k is the electrical conductivity, Φ is the electrical potential, and D is the diffusivity of ions. By 
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To numerically solve Eq. (6), the Fourier-spectral iterative perturbation method [3, 4] can be also applied 
as the case of mechanical equilibrium equation.  
 
• Integration of the computational models and solvers 
     The complete capability of mesoscale modeling can be established by integrating the developed 
components explained above as shown in Fig. 5. The integrated framework will enable the computer 
simulations of charge/discharge process, coupled microstructure evolution during the process to 
determine the optimum condition or architecture to maximize the performance of batteries.    

	  

Figure	  5.	  Integration	  of	  essential	  components	  of	  the	  mesoscale	  modeling	  of	  charge	  transport	  phenomena 
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